Использование баз данных в значительной степени облегчает человеку жизнь, работу с данными, позволяя получать в краткие сроки нужную информацию из базы, либо записывать в неё. Однако работа с данными требует должного подхода, программисту следует учитывать некоторые аспекты взаимодействия с базами данных. В частности речь идет о MySQL. Далее давайте рассмотрим выжимку из советов по оптимизации взаимодействия с базами данных MySQL.
Встроенный механизм кэширования запросов на сервере MySQL позволяет заметно улучшить производительность. Большинство серверов баз данных MySQL включен механизм кэширования. Множество одинаковых запросов к базе данных за короткий промежуток времени способны создавать значительные потери в производительности, механизм кэширования способен кэшировать такие запросы, отдавая данные уже из кэша. Есть запросы, которые MySQL не способен кэшировать, и эти запросы рекомендуется делать немного иначе.
// этот запрос MySQL закэшировать не сможет $res = mysql_query("SELECT username FROM user WHERE signup_date >= CURDATE()"); // сделать можно иначе $today = date("Y-m-d"); $res = mysql_query("SELECT username FROM user WHERE signup_date >= '$today'");
Дело в том, что в первом запросе была использована функция CURDATE(), особенность её работы не позволяет помещать результаты запроса в кэш. Значение даты можно предварительно записать в строку запроса, это позволит исключить использование функции CURDATE() в запросе.
По аналогии есть и другие функции, которые не кэшируются самим сервером MySQL, среди них RAND(), NOW() а так же другие функции, результат которых недетерминирован.
Посмотреть, как MySQL выполняет ваш запрос можно с помощью синтаксиса EXPLAIN. Его использование может помочь определить слабые места в производительности запроса, а так же в структуре таблиц. В качестве результата запроса EXPLAIN возвратит данные, которые покажут, какие используются индексы, каким образом выбираются данные из таблиц, как сортируются, и т.д. Для этого достаточно добавить вначале SELECT-запроса ключевое слово EXPLAIN, после чего будет показана таблица, с данными.
Не мало случаев, когда из таблицы вам требуется проверить наличие хотябы одной записи, в этом случае рекомендуется добавить к запросу параметр LIMIT 1. Это сделает его более оптимальным, т.к. механизм базы данных после нахождения первой записи остановит выборку данных, вместо того чтобы выбирать все данные. Вы экономите ресурсы.
// запрос города с кодом Shymkent из базы $res = mysql_query("SELECT * FROM location WHERE city = 'Shymkent'"); if (mysql_num_rows($res) > 0){ } // добавляем LIMIT 1 для оптимизации запроса $res = mysql_query("SELECT * FROM location WHERE city = 'Shymkent' LIMIT 1"); if (mysql_num_rows($res) > 0){ }
Под индексом в частном случае подразумевается индекс полей, по которым вы производите поиск, это позволит улучшить скорость поиска. Кстати обычный индекс не может срабатывать с условиями в виде регулярных выражений:
// тут сработает индекс city LIKE ‘shym%’ // тут же индекс задействован не будет city LIKE ‘%shymkent%’
Чтобы сделать индекс для условий с регулярными выражениями вам следует воспользоваться полнотекстовым индексом, либо подумать над своей системой индекса.
Если вы используйте множество объединений таблиц, то вам стоит задуматься о том, чтобы поля, участвующих в объединении были проиндексированы в обеих таблицах. Это дело влияет на то, как MySQL будет производить внутреннюю оптимизацию объединений полей таблицы. Поля объединения должны быть одного типа и одной кодировки. Т.е. к примеру, если одно поле будет иметь тип DECIMAL, а другое INT, то MySQL не сможет воспользоваться индексом.
Использование рандомной сортировки действительно является весьма удобным, и об этом такого же мнения многие начинающие программисты. Однако тут есть подводные камни, и очень весомые, используя подобный метод выборки в своих запросах, вы оставляете узкое место в производительности. Здесь же рекомендуется прибегнуть к дополнительному коду вместо использования ORDER BY RAND(), в качестве альтернативы, чтобы избавиться от слабого места в производительности, которое напомнит о себе при увеличении объема данных.
Не ленитесь указывать конкретные нужные поля в запросе при выборке, вместо использования «*» — выборка всех полей, дело в том, что чем больше данных считывается из таблицы, тем медленнее становиться ваш запрос.
Каждая таблица в хорошем её исполнении должна иметь поле id типа INT, которое является первичным ключом (PRIMARY_KEY), и AUTO_INCREMENT. Кроме того, для поля нужно указать параметр UNSIGNED, который означает то, что значение всегда будет положительным.
В MySQL есть внутренние операции, которые могут использовать первичный ключ, это играет роль для сложных конфигураций баз данных, таких как кластеры, распараллеливание, и т.д.
Кроме того, если есть несколько таблиц, и необходимо выполнить объединенный запрос, то тут ID таблиц окажется весьма кстати.
Давайте представим, вы хотите добавить поле в таблице, которое должно содержать определенный набор значений. Традиционно многие программисты выставляют тип VARCHAR для полей. Однако есть и другой тип поля, который гораздо быстрей и компактнее. Значения в данном типе хранятся так же, как и TINYINT, но отображаются как в строковом типе.
Поля NULL занимают больше места в записи, из-за того что возникает необходимость отмечать это NULL значение. Таблицы MyISAM, поля с NULL хранятся таким образом, что каждое поле занимает 1 дополнительный бит, который округляется до ближайшего байта. Если использование NULL в поле не принципиально, то рекомендуется использовать NOT NULL.
Prepared Statements (подготовленные выражения, их так же называют связываемыми переменными) — это часть функциональности SQL-баз данных, предназначенная для отделения данных запроса и собственно выполняемого SQL-запроса. Его использование имеет преимущества в плане безопасности, и производительности. Фильтруя значения данных, добавляемых в запрос, prepared statements таким образом защищает базу данных от SQL инъекций. Разумеется, делать подобные проверки можно и в ручную, однако в этом случае есть вероятность допустить ошибку из-за невнимательности. Последние версии MySQL компилируют prepared statements в бинарную форму, это позволяет повысить эффективность его работы. Выполняя множество однотипных запросов в приложении, MySQL будет разбирать запрос только один раз. На первых этапах prepared statements не имело возможности кэшироваться в MySQL, это являлось веской причиной для его игнорирования и отсутсвия желания использовать в своих проектах. Однако начиная с версии MySQL 5.1 ситуация кардинально поменялась.
mysql_unbuffered_query() посылает запрос MySQL query без автоматической обработки и буферизации её результата, в отличие от функции mysql_query(). Это позволяет сохранить достаточно большое количество памяти для SQL-запросов, возвращающих большое количество данных. Кроме того, вы можете начать работу с полученными данными сразу после того, как первый ряд был получен: вам не приходится ждать до конца SQL-запроса.
Для хранения IP-адресов в привычном виде многие хранят в таблице с полем типа VARCHAR(15), и лишь не многие используют целочисленный тип для этого. Плюсы в том, тип INT занимает 4 байта и имеет фиксированный размер поля. Поле типа INT должно быть UNSIGNED, т.е. целочисленным, в запросе следует использовать функцию INET_ATON(), которая будет конвертировать IP-адрес в число. Обратное преобразование выполняется с помощью функции INET_NTOA().
$res = "UPDATE hosts SET ip = INET_ATON('{$_SERVER['REMOTE_ADDR']}') WHERE id = $host_id";
Статичная таблица это обычная таблица в базе, за исключеним того, что каждое поле в таблице имеет фиксированный размер. Если в таблице есть колонки, не фиксированной длины, к примеру, это могут быть: VARCHAR, TEXT, BLOB, она перестает быть статичной, и будет обрабатываться MySQL немного иначе. Статичные таблицы, или их можно ещё назвать таблицами фиксированного размера работают быстрее не статичных. Записи из таких таблицах будут просматриваться быстрее, при необходимости выбора нужной строки MySQL быстро вычислит её позицию. Если поле имеет не фиксированный размер, то в этом случае поиск производиться по индексу. Есть и другие плюсы использования статических таблиц, дело в том, что эти таблицы проще кэшируются, а так же восстанавливаются после падения базы данных.
Вертикальное разделение – подразумевает разделение таблицы по столбцам, в целях увеличения производительности таблице. К примеру, если у вас в таблице есть поля, которые используются очень редко, либо это поля с переменной длиной, то их можно вынести в отдельную таблицу, таким образом, вы разгружаете таблицу, увеличивая тем самым скорость работы с ней.
Выполнение большого объема запросов такого рода может привести к блокировке таблицы, вследствие чего, к неправильной работы приложения в целом. Параллельные запросы на веб-сервер могут порождать дополнительное обращение к таблице. Если таблица заблокирована предыдущим запросом, последующие запросы выстраиваются в очередь, и как следствие это проявляется в виде торможения сайта, а то и падения сервера.
Если вам необходимо сделать множество запросов, постарайтесь контролировать их, отдавая небольшими сериями, а не скидывать всё на базу данных. При этом возможно ваш запрос будет выполняться дольше, но это менее скажется на других пользователях.
Пример:
while (1){ mysql_query("DELETE FROM logs WHERE log_date <= '2015-07-20' LIMIT 1000"); if (mysql_affected_rows() == 0){ // записи удалены успешно break; } usleep(50000); // делаем небольшую паузу }
Как известно данные базы хранятся на жестком диске, это зачастую это может оказаться одним из слабых мест в веб-приложении. Дело в том, что записи небольшого размера являются более предпочтительными, т.к. использование их уменьшает работу с жестким диском. Если вы уверенны, что конкретная таблица будет хранить мало строк, то рациональным решением будет использование типов полей, с минимальными возможными значениями. К примеру, если основной ключ имеет тип INT, и вы будете хранить в таблице лишь небольшое кол-во данных, то лучше сделать его типа MEDIUMINT, SMALLINT или даже TINYINT.
Два широко известных типа таблиц на сегодняшний день, это MyISAM и InnoDB, каждый из них имеет свои положительные и отрицательные стороны. К примеру, MyISAM хорошо считывает данные из таблиц в большом объеме, одно он более медлителен при записи. Он так же хорошо выполняет запросы вида SELECT COUNT(*).
Механизм хранения данных у InnoDB более сложный, чем у MyISAM, однако, он поддерживает блокировку строк, что является положительной стороной при масштабировании. Поэтому сказать, что одно лучше другого нельзя, да и не правильно, нужно выбирать тип исходя из своих потребностей.
Хорошая и полезная статья! Для начинающих само-то!